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: :

• Double helix macromolecule

• Each strand consists of an oriented sequence of four 
possible nucleotides:
Adenine, Thymine, Guanine & Cytosine

• Complementary strands:
[A]=[T] & [G]=[C] over the sum of both strands





Sequencing projects result in 4 letter texts :



NET RESULT : EACH DNA MOLECULE HAS BEEN  
PACKAGED INTO A MITOTIC CHROMOSOME THAT  IS 

50.000x SHORTER THAN ITS EXTENDED LENGTH

HIERARCHICAL STRUCTURE 
OF EUCARYOTIC DNA













FRACTALS SIGNALS

Turbulent 
velocity signal

Brownian signal 
‘‘ 1/f noise’’

Medical signal

Financial time 
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FRACTAL SIGNALS



ROUGHNESS EXPONENT

L0

Sf (k) ~ k –(2H+1)

Cf(l) =  < f (x) f(x+l) >  - < f (x) > 2 ~  l2H

W(L) =  < f 2 (x) >  - < f (x) > 2 ~   LH

H = roughness exponent Df = 2 - H

• Root-mean square of the height fluctuations :

• Random walk

• Power spectrum

• Correlation function

• 0.5 < H < 1 LONG RANGE CORRELATIONS (LRC)

• H = 0.5 UNCORRELATED

• 0 < H < 0.5 ANTI-CORRELATIONS
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WAVELET ANALYSIS OF FRACTAL SIGNALS

The wavelet transform allows us to LOCATE (b) the 
singularities of f and to ESTIMATE (a) their strength h(x)
(Hölder exponent)

Mathematical microscope

‘‘ Singularity scanner’’

g(x) : optics

b : position

a-1 : magnification

a

b

Tg (a,b)  = g* f(x) dx∫ ⎟
⎠
⎞⎜

⎝
⎛ −

 
 x b

aa
1

0.0 x 1.0

1.58

W2(x)

-1.22



CONTINUOUS WAVELET TRANSFORM OF THE 
TRIADIC DEVIL’S STAIRCASE 

WAVELET TRANSFORM 
MODULUS MAXIMA 

(WTMM)

WAVELET TRANSFORM 
REPRESENTATION

THE DEVIL’S STAIRCASE

WTMM SKELETON

F(x) is continuous but non differentiable. F’(x)=0 almost everywhere. 
Its continuous variation occurs over a set of Lebesgue measure = 0 
and dimension DF = log 2 / log 3

WTMM SKELETON OF THE 
TRIADIC CANTOR SET

F(x) = dµ(x) ∫ ∞−
x



Fractal measures
• Invariant measures associated with the strange attractors 
of discrete dynamical systems
• Turbulent energy dissipation

TRIADIC CANTOR SET

Fractal signals
• Weierstrass functions
• Fractional Brownian motions
• Turbulent signals

F(x) is continuous but non differentiable. F’(x)=0 almost everywhere.
Its continuous variation occurs over a set of Lebesgue measure = 0
and dimension DF = log 2 / log 3

DEVIL’S STAIRCASE
Characteristic
function of µ

F(x) = dµ(x) ∫ ∞−
x

UNIFORM
p1 = p2 = ½

MULTIFRACTAL

p1 ≠ p2

p1 p2

p12 p1p2 p2p1 p22

0 1





SYNTHETIC DNA SEQUENCES

nn



Fractional Brownian motions : BH

SYNTHETIC DNA WALKS

H = 0.3 anti-correlated

H = 0.5  uncorrelated

H = 0.7 long-range correlated

H = 0.9 long-range correlated

n





H=0.8

H=0.5



G + C poor G + C rich





HIERARCHICAL STRUCTURE 
OF EUCARYOTIC DNA

















AFM visualisation of a reconstituted  
chromatin fiber 

Pierre-Louis Porté, Emeline Fontaine, Cendrine Moskalenko

Images obtained in ‘Tapping Mode’ in air



Linear DNA (2500 bp) positioning 
nucleosomes

Image obtained in ‘Tapping Mode’ in air



Linear DNA (2500 bp) positioning 
nucleosomes

Image obtained in ‘Tapping Mode’ in air



Plasmid DNA (3200 bp) + nucleosomes

Images obtained in ‘Tapping Mode’ in air



Plasmid DNA (3200 bp) + nucleosomes
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Images obtained in ‘Tapping Mode’ in air





HIERARCHICAL STRUCTURE 
OF EUCARYOTIC DNA



LARGE SCALE REPRESENTATION   
OF GENOMIC SEQUENCES

Chromosome 22 (Human)



Transcription  

Replication

Opening of the double helix with a different 
environment for each strand => asymmetrical process



Symmetrical properties of the strands: 
‘‘Parity Rule type 2’’

[A] = [T]   &   [G] = [C] 
in each strand

Deviations from this property estimated by the 
compositional skews

S  = 
[C] – [G]
[C] + [G]CG

S  =
[A] – [T]
[A] + [T]AT

Compositional skew due to local biases in a strand in 
the course of biological mechanisms



Strand Compositional Asymmetry

A – T
A + T

+
C + G
C - G



A wavelet based methodology 
to detect gene clusters

Chromosome 22 (Human)
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A wavelet based methodology 
to detect replication origins

Experimentaly observed replication origin in the human 
genome

Globin: 4008 kb Chromosome 11

Predicted RO : 4009 kb
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Experimentaly observed replication origin in the human 
genome

Lamin B2: 2368 kb Chromosome 19

Predicted RO : 2365 kb

A wavelet based methodology 
to detect replication origins
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Transcription bias



Transcription bias

Detecting discontinuities using the wavelet 
transform
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wavelet



Application to a known human 
replication origin

Sc
al

e

Analyzing
wavelet

C-MYC origin (chromosome 8)

First evidence of a replication bias in human DNA



Application to a known human 
replication origin
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First evidence of a replication bias in human DNA



Application to a known human 
replication origin

Sc
al

e

Analyzing
wavelet

C-MYC origin (chromosome 8)

First evidence of a replication bias in human DNA

Our model : well defined replication origins, separated by 
diffuse terminuses



Profile detection using an analyzing wavelet 
adapted to the shape of replicons

Analyzing
wavelet
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Profile detection using an analyzing wavelet 
adapted to the shape of replicons
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Deterministic Chaos in DNA Sequences



SHIL’NIKOV HOMOCLINIC CHAOS





Strand Compositional Asymmetry

A – T
A + T

+
C + G
C - G



Phase Portrait Representation of AT+CG skew
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